CORAL: Quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats
نویسندگان
چکیده
For six random splits, one-variable models of rat toxicity (minus decimal logarithm of the 50% lethal dose [pLD50], oral exposure) have been calculated with CORAL software (http://www.insilico.eu/coral/). The total number of considered compounds is 689. New additional global attributes of the simplified molecular input line entry system (SMILES) have been examined for improvement of the optimal SMILES-based descriptors. These global SMILES attributes are representing the presence of some chemical elements and different kinds of chemical bonds (double, triple, and stereochemical). The "classic" scheme of building up quantitative structure-property/activity relationships and the balance of correlations (BC) with the ideal slopes were compared. For all six random splits, best prediction takes place if the aforementioned BC along with the global SMILES attributes are included in the modeling process. The average statistical characteristics for the external test set are the following: n = 119 ± 6.4, R(2) = 0.7371 ± 0.013, and root mean square error = 0.360 ± 0.037.
منابع مشابه
QSAR Prediction of Half-Life, Nondimentional Eeffective Degradation Rate Constant and Effective Péclet Number of Volatile Organic Compounds
In this work some quantitative structure activity relationship models were developed for prediction of three bioenvironmental parameters of 28 volatile organic compounds, which are used in assessing the behavior of pollutants in soil. These parameters are; half-life, non dimensional effective degradation rate constant and effective Péclet number in two type of soil. The most effective descripto...
متن کاملPrediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...
متن کاملQuantitative structure activity relationship study of inhibitory activities of 5-lipoxygenase and design new compounds by different chemometrics methods
A quantitative structure-activity relationship (QSAR) study was conducted for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using chemometrics methods such as multiple linear regression (MLR) ...
متن کاملQuantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کاملQsar Studies for Predition of Cation Toxicity
The quantitative structure-activity relationship approach used for modeling and predictions of variety biological/toxic effects is mainly applied for investigation of organic compounds. However, the approach could be also successfully used in cases where the toxic response should be predicted for inorganic chemicals. While molecules of organic compounds reflect their properties as a whole, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 32 12 شماره
صفحات -
تاریخ انتشار 2011